Exclusive Clothing Sale On Soft & Soothe

Get up to 63% off on our latest collection.

Shop Now

Solving the N-Queens Problem in C# | Print all possible solutions to N–Queens problem in C#

The N–queens puzzle is the problem of placing N chess queens on an N × N chessboard so that no two queens threaten each other. Thus, the solution requires that no two queens share the same row, column, or diagonal.

N-Queens is a tricky problem. To solve this problem efficiently, it requires knowing the backtracking algorithm. Basically, the problem is to place N queens on an NxN chessboard. So in this article, we will discuss how to solve the N-Queens problem using a backtracking algorithm.


C# Code

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

 

namespace ConsoleApp1

{

    class Program

    {

        const int N = 4;

        static void Main(string[] args)

        {

            int count = 0;

            int[,] board = new int[N, N];

 

            //Initialize the board array to 0

            for (int i = 0; i < N; i++)

            {

                for (int j = 0; j < N; j++)

                {

                    board[i, j] = 0;

                }

            }

 

            //Initialize the pointer array

            int[] pointer = new int[N];

            for (int i = 0; i < N; i++)

            {

                pointer[i] = -1;

            }

 

            //Implementation of Back Tracking Algorithm

            for (int j = 0; ;)

            {

                pointer[j]++;

                //Reset and move one column back

                if (pointer[j] == N)

                {

                    board[pointer[j] - 1, j] = 0;

                    pointer[j] = -1;

                    j--;

                    if (j == -1)

                    {

                        Console.WriteLine("all possible solutions to N–Queens problem are done");

                        break;

                    }

                }

                else

                {

                    board[pointer[j], j] = 1;

                    if (pointer[j] != 0)

                    {

                        board[pointer[j] - 1, j] = 0;

                    }

                    if (SolutionCheck(board))

                    {

                        j++;//move to next column

                        if (j == N)

                        {

                            j--;

                            count++;

                            Console.WriteLine("Solution" + count.ToString() + ":");

                            for (int p = 0; p < N; p++)

                            {

                                for (int q = 0; q < N; q++)

                                {

                                    Console.Write(board[p, q] + " ");

                                }

                                Console.WriteLine();

                            }

                        }

                    }

                }

            }

 

            Console.ReadLine();

        }

        public static bool SolutionCheck(int[,] board)

        {

            //Row check

            for (int i = 0; i < N; i++)

            {

                int sum = 0;

                for (int j = 0; j < N; j++)

                {

                    sum = sum + board[i, j];

                }

                if (sum > 1)

                {

                    return false;

                }

            }

            //Main diagonal check

            //above

            for (int i = 0, j = N - 2; j >= 0; j--)

            {

                int sum = 0;

                for (int p = i, q = j; q < N; p++, q++)

                {

                    sum = sum + board[p, q];

                }

                if (sum > 1)

                {

                    return false;

                }

            }

            //below

            for (int i = 1, j = 0; i < N - 1; i++)

            {

                int sum = 0;

                for (int p = i, q = j; p < N; p++, q++)

                {

                    sum = sum + board[p, q];

                }

                if (sum > 1)

                {

                    return false;

                }

            }

            //Minor diagonal check

            //above

            for (int i = 0, j = 1; j < N; j++)

            {

                int sum = 0;

                for (int p = i, q = j; q >= 0; p++, q--)

                {

                    sum = sum + board[p, q];

                }

                if (sum > 1)

                {

                    return false;

                }

            }

            //below

            for (int i = 1, j = N - 1; i < N - 1; i++)

            {

                int sum = 0;

                for (int p = i, q = j; p < N; p++, q--)

                {

                    sum = sum + board[p, q];

                }

                if (sum > 1)

                {

                    return false;

                }

            }

            return true;

        }

    }

 

}

 


Output





Share this

Related Posts

Previous
Next Post »

Exclusive Clothing Sale On Soft & Soothe

Get up to 63% off on our latest collection.

Shop Now